首页> 外文OA文献 >Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification
【2h】

Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification

机译:商业纯铝板机械各向异性的多层次建模:晶体塑性模型,先进的屈服函数和参数识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanical anisotropy of an AA1050 aluminium plate is studied by the use of five crystal plasticity models and two advanced yield functions. In-plane uniaxial tension properties of the plate were predicted by the full-constraint Taylor model, the advanced Lamel model (Van Houtte et al., 2005) and a modified version of this model (Mánik and Holmedal, 2013), the viscoplastic self-consistent model and a crystal plasticity finite element method (CPFEM). Results are compared with data from tensile tests at every 15° from the rolling direction (RD) to the transverse direction (TD) in the plate. Furthermore, all the models, except CPFEM, were used to provide stress points in the five-dimensional deviatoric stress space at yielding for 201 plastic strain-rate directions. The Facet yield surface was calibrated using these 201 stress points and compared to in-plane yield loci and the planar anisotropy which were calculated by the crystal plasticity models. The anisotropic yield function Yld2004-18p (Barlat et al., 2005) was calibrated by three methods: using uniaxial tension data, using the 201 virtual yield points in stress space, and using a combination of experimental data and virtual yield points (i.e., a hybrid method). Optimal yield-surface exponents were found for each of the crystal plasticity models, based on calibration to calculated stress points at yielding for a random texture, and used in the latter two calibration methods. It is found that the last hybrid calibration method can capture the experimental results and at the same time ensure a good fit to the anisotropy in the full stress space predicted by the crystal plasticity models.
机译:通过使用五个晶体可塑性模型和两个先进的屈服函数,研究了AA1050铝板的机械各向异性。通过全约束泰勒模型,先进的Lamel模型(Van Houtte等人,2005年)和该模型的修改版本(Mánik和Holmedal,2013年),粘塑性自我预测板的面内单轴拉伸特性。 -一致模型和晶体可塑性有限元方法(CPFEM)。将结果与钢板中从轧制方向(RD)到横向(TD)每15°进行拉伸试验的数据进行比较。此外,除CPFEM外,所有模型均用于在201维塑性应变率方向上屈服时在五维偏应力空间内提供应力点。使用这201个应力点对Facet屈服面进行了校准,并将其与通过晶体可塑性模型计算的面内屈服位点和平面各向异性进行了比较。各向异性屈服函数Yld2004-18p(Barlat等,2005)通过以下三种方法进行校准:使用单轴张力数据,使用应力空间中的201个虚拟屈服点以及使用实验数据和虚拟屈服点(即,混合方法)。根据对随机纹理屈服时计算出的应力点的校准,找到了每种晶体可塑性模型的最佳屈服面指数,并在后两种校准方法中使用。发现最后一种混合标定方法可以捕获实验结果,同时确保与晶体可塑性模型所预测的整个应力空间中的各向异性良好拟合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号